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We have investigated spin-dependent transport properties in finite semiconductor superlattices containing N
periods. Spin-orbit coupling is taken into account by including the linear Dresselhaus term into the effective
Hamiltonian. We have derived analytical expressions for spin-polarized transmission coefficients, density of
states, group velocities, and phase delay times for these systems. It is shown that the miniband structure of
infinite semiconductor superlattices is spin dependent and plays a fundamental role in the description and
understanding of these quantities. For N-period superlattices, these quantities are oscillating functions of the
electron energy and their maxima and/or minima are always localized inside the corresponding spin-split
minibands. The oscillations disappear for energies inside the superlattice minigaps. We have identified two
electron energy ranges where the spin-split minibands do not show overlap and, within these energy ranges, the
polarization efficiency is essentially 100%, suggesting that these systems may be explored as possible spin
filtering mechanism, even for unpolarized injection from the emitter layer. It is also shown that the energy
range where the spin-split resonant minibands show overlap may be also explored as lateral multichannel spin
filters, but their efficiencies depend on the degree of resonant peak overlapping.
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I. INTRODUCTION

The transport of spin-polarized carriers through semicon-
ductor heterostructures has received much attention in the
last few years. This interest was motivated by new basic spin
properties discovered in these structures and by potential ap-
plications in a wide range of spintronic devices such as spin
filters,1 spin detectors, and injectors.2,3 The spin-orbit inter-
action �SOI�, associated either with bulk inversion asymme-
try �BIA� and/or with structural inversion asymmetry �SIA�,
plays a fundamental role in the study of transport in these
semiconductor structures. In particular, the coupling between
linear momentum and spin degree of freedom lifts the spin
degeneracy and leads to spin-dependent properties that can
be explored as transport of classical information as well as
spin quantum bits through a nanostructure. The different
quantities such as reflection and transmission coefficients,
local or extended spin polarization, and tunneling times must
be dependent on spin orientation, besides the geometrical
and physical dependencies inherent to each semiconductor
material used in the nanostructure. The SIA term, controlled
by external electric fields, and BIA term, associated with the
asymmetry intrinsic to crystalline zincblende materials, can
be treated within effective mass1–10 and transfer matrix
frameworks.7–10 In many cases, when studying the spin-
oriented transport properties in heterostructures, the interplay
between these two SOI terms must be taken into account.
Here, however, we are including the k-linear BIA term only
since we will be analyzing transport in symmetric hetero-
structures for the zero electric field and incidence at low-
energy �low k-values� limiting cases, thus effects associated
with higher k-order Dressellhaus �BIA� �quadratic and cubic�
as well as the k-linear SIA terms can be neglected.3

On the other hand, an important research topic in spin-
tronics is the development of efficient spin filters, devices
that require some control on the spin orientation. In recent

years, spin filters based on simple1,2,4–6 and multiple-barrier
semiconductor structures11–21 have been investigated. It has
been demonstrated that asymmetric1 and symmetric2,4–6

simple barriers exhibit tunneling transmission coefficients
dependent on the spin polarization. Unfortunately, it was also
shown that the spin polarization efficiency is relatively low
in these structures. Thus, it has been suggested to use
multiple-barrier resonant structures to further enhance the
device efficiency. The double-barrier semiconductor hetero-
structures, in presence and absence of external electric fields,
is the most widely studied heterostructure. In these systems,
the spin-polarization efficiency may be substantially en-
hanced and reach, in many cases, values near 100% at the
peak positions. Similar results were also reported for triple-
barrier tunneling diodes.21 Therefore, such structures could
serve as spin filters or even determine Bell’s inequalities for
entangled electron spins22 if the enhanced degree of spin-
polarization can be tuned for a range of energy and for some
specific spin orientation.

The finite zincblende semiconductor SL may be used also
to enhance spin-polarized efficiencies and this becomes pos-
sible because: �i� transmission coefficients of these structures
exhibit resonant peaks at energies localized inside the mini-
bands of the corresponding infinite superlattice, �ii� these
minibands are spin dependent. There have been only a few
works on spin-dependent transport in finite semiconductor
superlattices,23,24 which were, basically, devoted to the nu-
merical calculation and discussion of the transmission coef-
ficient and associated resonant energies as functions of the
spin orientation and SL parameters. However, the informa-
tion contained in the total accumulated phase � �Ref. 16� of
the complex transmission amplitude through the SL structure
has not received, up to now, a special attention. Important
physical quantities related to the spin-dependent transport of
electrons, such as the group velocities and the tunneling de-
lay times can be accessed directly from the knowledge of the
phase �, and these two quantities determine the dynamic
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working range of a tunneling device. These observations
have motivated us to carry out a detailed study of spin-
dependent transport of electrons in finite zincblende semi-
conductor superlattices. In this work we derive analytical
expressions for the complex transmission coefficient, total
accumulated phase �, density of states, group velocities and
phase delay times.

The paper is organized as follows. The Sec. II shows de-
tails of the theoretical approach and Sec. III is concerned
with results and discussion. Finally, our conclusions are
given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this work, we will be concerned with spin dependent
transport of electrons through a finite superlattice �SL� struc-
ture consisting of alternating layers of zincblende semicon-
ductors A and B, periodically distributed along the �001� di-
rection, which is taken as the z axis, as shown qualitatively in
Fig. 1. In this SL we define d=a+b as the length or period of
the corresponding unit cell, where a and b are the widths of
layers A and B, respectively. For simplicity, in what follows
we consider the SL as a one-dimensional �1D� symmetric
structure formed by rectangular barriers �layers B� and wells
�layers A�. Also, we suppose that the semiconductors A and
B exhibit a relatively strong Dresselhaus spin-orbit interac-
tion. So, within envelope function approximation, the
Schrödinger equation for conduction electrons in each layer
reads

���2�k̂x
2 + k̂y

2 + k̂z
2�

2m��z�
+ V�z��I + ĤD�F�r�� = EF�r�� , �1�

where m��z� is the position-dependent electron effective
mass, V�z� is the heterostructure potential profile and I is the

2�2 identity matrix. Also, ĤD is the Dresselhaus SOI
Hamiltonian due to the bulk inversion asymmetry in
zincblende materials which, for low kinetic energy regime,
may be approximated only by the k-linear term2

ĤD = ��z���yk̂y − �xk̂x�k̂z
2, �2�

where ��z� represents the z-dependent strength of the spin-
orbit �SO� coupling constant, �x and �y are Pauli spin matri-
ces. As is well known,7,25 the envelope wave functions de-
scribing the dynamics of the electrons through the structure
satisfy the boundary conditions

�a� F�r�� and �b� vzF�r�� , �3�

must be continuous in any interface. In the presence of SOI,
the z-component of the velocity operator becomes

v̂z =
�k̂z

m��z�
I +

2��z�
�

��yk̂y − �xk̂x�k̂z, �4�

and these conditions assure the continuity of the probability
density and the current density across each boundary. Due to
the translational invariance along the xy plane, the wavevec-
tor k�p= �kx ,ky�= �kp cos � ,kp sin �� becomes a good quantum
number. Thus, the Hamiltonian in Eq. �1� is separable and
the spin-polarized eigenfunctions may be chosen as

F�r�� = �����exp i�k�p . 	��u��kp,z� , �5�

where 	� is the electron position in the xy plane, and2 the
two-component functions

����� =
1
	2
� 1


exp�− i�� � �6�

describe spinor states with well defined values of the spin
projection along the polarization vectors P� +=+�� and P� −=
−�� , respectively. Here, �� = �−cos � , sin � ,0� is an in-plane
unitary vector and � denotes the polar angle for the
wavevector k�p with length kp=	kx

2+ky
2.

Furthermore, the functions for the spin-polarized states,
u��kp ,z� shown in Eq. �5�, satisfy the eigenvalue problem

��2

2
k̂z� 1

m��z,kp�
k̂z� + V�z��u��kp,z� = E��kp�u��kp,z� ,

�7�

where E��kp�= �E�−�2kp
2 /2m��z�� and

m��z,kp� = m��z��1 � 2��z�m��z�kp/�2�−1 �8�

are kp-dependent eigenvalues and SOI renormalized electron
effective masses along the z direction of the layers. Within
this approach, the spin projections along the vectors � �� are
conserved.

By applying the velocity operator v̂z on functions in Eq.

�5� and taking into account that the spin operator ��yk̂y

−�xk̂x� is diagonalized2 by spinors �����exp i�k�p .	��, we find

v̂zF�r�� = − i� exp i�k�p . 	�������
1

m��z,kp�
du��kp,z�

dz
. �9�

Since both v̂zF�r�� and F�r�� are expressed as products of
functions depending separately on spin, 	� , and z, the conti-
nuity shown in Eqs. �3� and �4� reduce to the following
boundary conditions for the two-component functions:

f��z,kp� = 
 u��z�
1

m��z,kp�
du��z�

dz
� are continuous. �10�

This result is a direct consequence of the fact that the veloc-
ity operator v̂z has diagonal form in the spinors
�����exp i�k�p .	��. For cases where the velocity operator is

FIG. 1. �Color online� Finite superlattice profile showing the
ABABABA semiconductor layer structure, dimensions, and period
d=a+b. The emitter and collector terminals are assumed to be
formed by equal semiconductors. Horizontal arrows indicate the
incident, reflected �rN� and transmitted �tN� coefficients. For sim-
plicity, the amplitude of incident wave was normalized to one.
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not diagonal, the corresponding spin-dependent boundary
conditions26,27 are, in general, different from Eq. �10�.

In order to obtain the transmission coefficients through a
finite SL structure �see Fig. 1�, it is necessary: �i� to solve Eq.
�7� for each spin polarized state and, �ii� by using continuity
conditions in Eq. �10� we determine the relation between
emitter and in the collector wave functions.

For simplicity of notation, the spin polarization signs �� �
in the above equations will be omitted in the following cal-
culations where we use the transfer matrix method to obtain
the transfer matrix W through the SL unit cell, which may be
written as �see Appendix�

W = �W11 W12

W21 W22
� , �11�

where the matrix elements are

W11 = cos aQ1 cos bQ2 −
1

�
sin aQ1 sin bQ2, �12�

W12 =
m1�kp�

Q1
�sin aQ1 cos bQ2 + � cos aQ1 sin bQ� ,

�13�

W21 = −
Q1

m1�kp��sin aQ1 cos bQ2 +
1

�
cos aQ1 sin bQ2� ,

�14�

W22 = cos aQ1 cos bQ2 − � sin aQ1 sin bQ2. �15�

The other terms in these matrix elements are

� =
m2�kp�
m1�kp�

Q1

Q2
, �16�

Qi =	2mi
�

�2 �Ei�kp� − Vi��1 �
2mi

��ikp

�2 −1/2

, i = 1,2

�17�

In these equations, Ei�kp�= �E−�2kp
2 /2mi

�� and the terms
mi

�, mi�kp�, Qi, Vi, and �i stand for the electron effective
mass, spin-dependent effective mass �see Eq. �8��, z compo-
nent of the wavevector, potential profile and SOI constant of
layers A �wells or i=1� and B �barriers or i=2�, respectively.

The transfer matrix through N unit cells and established
between the points z0 in the emitter and zN in the collector
�see Fig. 1�, becomes

M = WNWN−1 . . . W2W1 � WN. �18�

By using the Cayley-Hamilton theorem �a matrix obeys
its own eigenvalue equation� and the fact that W is a 2�2
unimodular unit cell matrix, it can be demonstrated that M
=WN can be written as28

M = WN =
sin N

sin 
W −

sin�N − 1�
sin 

I , �19�

where  is the Bloch phase associated with the infinite semi-
conductor SL �N→�� which satisfies the SL dispersion re-
lation

cos  =
1

2
tr�W� = cos aQ1 cos bQ2 −

1

2
�� +

1

�


� sin aQ1 sin bQ2 = f�E� �20�

Results in Eqs. �18�–�20� show that the unit cell transfer
matrix W, the number of unit cells N, and the Bloch phase 
associated with the infinite SL play a fundamental role in the
study of the spin-dependent transport of electrons through a
finite SL structure. As shown in Fig. 1, the total wave func-
tion in the emitter side �z�z0� is a linear combination of
incoming �incident� and outgoing �reflected� waves in the
form

uL�kp,z� = eiQ1L�z−z0� + rNe−iQ1L�z−z0�. �21�

Also, in the collector side �z�zN�, the transmitted wave
can be written as

uR�kp,z� = tNeiQ1R�z−zN�, �22�

where rN and tN are the reflection and transmission ampli-
tudes. To obtain the relation between rN and tN, it is neces-
sary to use the fact that WN, in Eq. �19�, is the transfer matrix
trough N unit cells and the two-component function f�z ,kp�
�see Eq. �10�� is continuous at the points z0 in the emitter and
zN in the collector �see Fig. 1�. This gives

�tN

0
� = T̂� 1

rN
� , �23�

where

T̂ = �T11 T12

T21 T22
� = SR

−1WNSL, �24�

is the total transfer matrix, SL and SR are left and right side
propagation matrices calculated at the left �emitter� and right
�collector� interfaces of the SL and given by

Sj = � 1 1

iQ1j/mj − iQ1j/mj
�, for j = L,R , �25�

and Q1j /mj, j=R ,L, are quantities associated with carriers
traveling through emitter �j=L� or collector �j=R� of the SL
structure.

Taking into account that WN is a unimodular matrix, it
follows from Eqs. �23�–�25� the transmission amplitude

tN =
Det�T̂�

T22
=

Det�SR
−1�Det�SL�
T22

=
mRQ1L

mLQ1R

1

T22
, �26�

where Det stands for determinant.
In the following part we will be focusing our attention on

the most common SL structure where emitter and collector
regions are made of the same semiconductor as in the well
regions �see Fig. 1�. In this case, Q1L /mL=Q1R /mR and the
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complex transmission amplitude may be written as

tN =
1

T22
= �tN�ei�, �27�

where � is the total phase accumulated as the electron
propagates through the structure, which is proportional to the
total active SL length28 D=zN−z0 i. e., �=DkN, where kN is
the effective propagation wavevector.

After substituting Eq. �19� into Eq. �24� and using the fact
that

SR = SL = S1 = � 1 1

iQ1/m1�kp� − iQ1/m1�kp� � , �28�

the total transfer matrix becomes

T̂ =
sin N

sin 
S1

−1WS1 −
sin�N − 1�

sin 
I . �29�

Thus, using Eqs. �11�–�15� and �28� in the latter equation,
the element T22 of the total transfer matrix is given by

T22 = cos N − i
sin N

sin 
G��� , �30�

where

G��� =
1

2
� Q1

m1�kp�
W12 −

m1�kp�
Q1

W21�
= sin aQ1 cos bQ2 +

1

2
�� +

1

�
cos aQ1 sin bQ2.

�31�

Furthermore, the function G��� and both cos N and
sin N /sin  are real quantities because: �i� Q1 �wells� is
always real because E�V1 in these SL layers �see Eq. �17��;
�ii� Q2 �barriers� will be real for E�V2 and becomes a pure
imaginary number otherwise �see also Eq. �17��; and �iii� the
Bloch phase  is real inside the allowed minibands and equal
to i� or to �+ i� in the energy gap regions, where � is a real
angle. It follows from these results and Eq. �30� that the
phase � in Eq. �27� satisfies the equation

tan � =
G���tan N

sin 
. �32�

Since Eqs. �27�, �30�–�32�, and �20� completely determine
the complex transmission amplitude tN for each electron spin
state, they can be used to study some physical quantities
closely related to the spin-dependent transport of electrons
through the finite semiconductor SL. In fact, they can be
used to calculate the transmission coefficient,

T�E� = �tN�2 =
1

�T22�2
, �33�

as well as the density of states 	�E�, the group velocity vg�E�
and the phase delay time16 �pd for each spin state, quantities
obtained from the accumulated phase �=DkN via the
equations28

�a� 	�E� =
dkN

dE
, �b�vg�E� =

dE

�dkN
, �c��pd = �

d�

dE
.

�34�

Equations �32� and �20� can be used to determine the
analytical expression for d� /dE and, after some algebraic
manipulation, we are led to

d�

dE
=

�1 − f2�tan N�dG/dE�
	1 − f2�1 + G2 tan2 N − f2�

−
�N�1 + tan2 N�	1 − f2 − f tan N�G�df/dE�

	1 − f2�1 + G2 tan2 N − f2�
.

�35�

This equation is important since it provides exact expres-
sions for the density of states, group velocity and phase delay
time for each spin state orientation in the SL structure.

Before presenting numerical results, let us discuss briefly
some aspects of the quantities T�E� and d� /dE, which will
help the description and understanding of spin-dependent
transport properties in finite SL structures. The transmission
coefficient T assumes value one for both spin orientations in
a SL of N unit cells when N=Nkd=m�, with m
=1,2 , . . . , �N−1� and k being the Bloch wavevector along
the z-axis. These conditions are independent of the specific
dependence of function G��� �see Eq. �31�� on the unit cell
sizes. It is also apparent that T is a periodic function of k
with period � /Nd. Thus, when the electron energy E varies
within an allowed miniband, T�E� displays oscillations as a
function of E and exhibits a resonant structure with resonant
energies determined by the corresponding dispersion rela-
tions evaluated at k=m� /Nd. For electron energy inside
minigaps, k is a complex quantity and, therefore, the reso-
nant structure of T�E� disappears. Furthermore, d�

dE also ex-
hibits similar structure as T�E�, as can be seen in Eq. �35�. In
general, d�

dE and T�E� exhibit different resonant structures or
more specifically, their spectra are slightly different for finite
values of N but becomes essentially identical for SL struc-
tures with very large periods N.

III. RESULTS AND DISCUSSION

Let us use this analytical description to carry out a de-
tailed study of spin-dependent transport in finite zincblende
semiconductor SL. For the numerical calculations we have
chosen SL formed by GaSb �wells� and Al0.3Ga0.7Sb �barri-
ers�, semiconductors exhibiting very strong Dresselhaus SOI
coupling constants. The parameters appropriate for this SL
are2,3 m1

�=0.041m0, �1=187 eV-Å3, and V1=0 for GaSb and
m2

�=0.053m0, �2=76 eV-Å3, and V2=0.43 eV for
Al0.3Ga0.7Sb. Finally, the zero of energy is taken at the bot-
tom of the conduction band of the GaSb layers.

Let us discuss the properties of the miniband structure for
an infinite SL as functions of the spin orientation. Figure 2�a�
shows the two lowest miniband energy curves, calculated
from Eq. �20�, for a SL with sizes: a=60 Å, b=30 Å and
plotted as a function of the reduced Bloch wavevector
kd /�= /�. Since the Dresselhaus SOI term is proportional
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to the in-plane wavevector kp, the miniband structure only
lifts the spin degeneracy for kp�0. The spin split at the
miniband edges of the infinite SL with sizes a=60 Å, b
=30 Å is shown as a function of the dimensionless quantity
dkp in Fig. 2�b�. The SOI effects associated with larger bar-
rier size is seen in Fig. 2�c�, for a SL with sizes a=30 Å,
b=60 Å. Curves labeled r�+� and r�−� �p�+� and p�−�� rep-

resent the energies of spin states �+ and �− at k=0�k
= �� /d�, respectively, and show that the spin splitting in-
creases with increasing dkp and quantum confinement in the
well regions. It should be emphasized that, for given values
of dkp�0, a and b, the spin-splitting miniband for spin up
�spin down� is localized in the energy range determined by
the corresponding r�+� and p�+� �r�−� and p�−�� band edges.
Further, the energy ranges for which the spin-splitting mini-
bands do not overlaps are of special interest because they
exhibit interesting spin filtering properties, as we will see
later. Note that, for given values of dkp�0, a and b, these
energy ranges are localized between the r�+� and r�−� band
edges and between the p�+� and p�−� band edges. It is clearly
seen that the widths of both energy ranges increases with
dkp, as expected.

We now turn to the study of the spin-dependent transmis-
sion coefficient spectra and polarization efficiency for finite
GaSb−Al0.3Ga0.7Sb semiconductor SLs. The transmission
coefficients T+�E� and T−�E� associated with spin states �+
and �−, respectively, are obtained from Eq. �33�. The degree
of spin polarization can be calculated as

P�E� =
T+�E� − T−�E�
T+�E� + T−�E�

. �36�

It should be pointed out that we are only considering spin
effects in energy ranges inside the lowest spin splitting mini-
bands of the corresponding infinite SL. The spin polarized
transmission coefficients and the degree of spin polarization
at dkp=0,2, for finite SL with increasing numbers of unit
cells N, are presented in the sequence of figures �Figs. 3–7�
but keeping the same two periods of the infinite SLs shown
in Figs. 2�b� and 2�c�. The energy dependence with N=2
�double barrier diodes� are displayed in Figs. 3 and 4, respec-
tively. At same SOI strength, dkp=2, the spin splitting of
transmission peaks increases with the quantum confinement
and this increase makes the polarization efficiency at the
resonant energy slightly lower in Fig. 3�c� �a=60 Å, and b
=30 Å� than in Fig. 4�c� �a=30 Å, and b=60 Å�. A com-
parison between Figs. 2�b� and 3 and between Figs. 2�c� and
4 reveals that the resonant energies associated with transmis-
sion peaks are always localized inside the lowest spin-split
miniband of the infinite SL. For instance, the peak for
spin-up �spin-down� close to 150 meV �145 meV� in Fig.
3�b� is localized within the allowed miniband situated be-
tween the r�+� and p�+� �r�−� and p�−�� band edges shown in
Fig. 2�b�, for dkp=2. Similarly, the resonance energy �E
�112 meV� associated with the degenerate peak shown in
Fig. 3�a� is situated inside the corresponding miniband at
dkp=0 �see Fig. 2�b��.

Furthermore, since we are dealing with exact calculations,
the spin polarized transmission peak exhibit value T=1 for
each spin state. In general, the finite SL containing N unit
cells displays �N−1� spin degenerate transmission peak
structure in the absence of SOI �dkp=0�, which splits into
2�N−1� resonant peaks in the presence of SOI �dkp�0�.
Certainly, when the number of unit cells �N� increases, the
spin polarized resonant peaks of the transmission coefficient
�T=1� occur at much closer energy values which are distrib-
uted inside the sharp miniband broadening of the infinite SL.

FIG. 2. �Color online� �a� The two lowest dispersion curves for
an infinite semiconductor SL composed of alternating layers of
GaSb �wells� and Al0.3Ga0.7Sb �barriers�, for a=60 Å, b=30 Å,
and dkp=0. The energy is presented as a function of the reduced
Bloch wavevector kd /�. Energies corresponding to the band edges
of the lowest miniband as functions of dkp for �b� a=60 Å, b
=30 Å, and �c� a=30 Å, b=60 Å. Curves r�+� and r�−� �p�+� and
p�−�� represent the band edges at k=0�k= �� /d� for spin states �+

and �−, respectively.
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Therefore, the energy separation between spin-split peaks de-
creases, the overlap between them may increase which leads
to smaller degree of spin polarization away from the resonant
peak energy. It is noted that resonant lines of T�E� at same
SOI strength, as depicted in Fig. 6�b� for a=30 Å, are nar-
rower than in Fig. 5�b� for a=60 Å, and this result may be
assigned to quantum confinement effects.

The resonant energies localized inside the spin-split mini-
band are determined by the dispersion relation evaluated at
the Bloch wavevectors km=m� /Nd, with m=1,2 , . . . , �N
−1�. For SLs with sufficiently large number of periods N,
there will have a certain number of km vectors near the center

and the edges of the Brillouin zone. As a consequence, a
number of spin-polarized resonant peaks will be displaced to
lower and higher energy ranges. Some of these transmission
peaks on the left �spin-down� and on the right �spin-up� will
show no overlap, as can be seen on left and right sides of
Figs. 5�b�, 6, and 7�b�. These isolated spin polarized trans-
mission corresponds essentially to 100% polarization effi-
ciency and, therefore, this finite SL can be explored as pos-
sible vertical spin filtering mechanism, even for unpolarized
injection at the emitter. Inside the energy range where the
spin-split minibands show overlapping, the polarization effi-
ciency P�E� becomes an oscillating function of the incident
electron energy and the peak values of P�E� depend on the
degree of overlapping between the adjacent transmission co-
efficients T+�E� and T−�E�. Anyhow, for specially designed
finite SL, these peaks may also be explored as a longitudinal

FIG. 3. �Color online� Transmission coefficient and polarization
efficiency as functions of the energy for a double-barrier resonant
device �N=2� with a=60 Å, b=30 Å, and dkp=0,2. Signs + and −
correspond to spin-up and spin-down states or �+ and �−,
respectively.

FIG. 4. �Color online� The same as Fig. 3, but interchanging the
dimensions: a=30 Å and b=60 Å.
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multichannel spin filter, foreseeing technological progresses
in the near future for the construction of efficient spin-
selecting detectors not only on the collector side of the finite
SL �vertical transport� but also as source and drain contacts
near to left and right interfaces in order to explore spin-
polarized longitudinal transport along the well layers.

Certainly, any technical possibility to explorer these struc-
tures as spin filtering devices requires some knowledge on
spin-dependent group velocity vg and phase delay time �pd,
quantities which provide valuable information about the dy-
namical ranges for finite SLs. The delay time may be under-
stood as due to repeated Bloch reflections of electron in the
structure before it manages to escape the localization region.

In order to better appreciate these results, we display in Figs.
8–10 both quantities as functions of incident electron energy,
for the same SL parameters used in Figs. 3–6, respectively.
The group velocity vg is depicted in units of v0=1.52
�107d �Å� cm /s, where d�Å� is the length of the SL unit
cell in Å. For each spin state and SL configuration, the en-
ergy dependence of �pd�E� exhibits maxima and minima at
energies where the group velocity vg�E� takes its minimum
and maximum values, respectively �see also Eq. �34��. The
resonant energy spectra for �pd�E� and transmission coeffi-
cient T�E� are essentially identical, thus, when a resonant
transmission occurs, the phase delay time and group velocity
take, approximately, their corresponding maximum and mini-

FIG. 5. �Color online� The same as in Fig. 3, but for N=5.
Observe in panel �b� the spin-up and spin-down isolated resonant
peaks with energies close to 165 meV and 134 meV, respectively.

FIG. 6. �Color online� The same as in Fig. 5, but with inter-
changed sizes a=30 Å and b=60 Å. Observe in panel �b� the
spin-up �spin-down� isolated resonant peaks with energy above �be-
low� 265 �255� meV.
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mum values, respectively. Effects associated to SOI splits
each degenerate peak of �pd at dkp=0 into two peaks when
dkp�0 and the lower energy state ��−� stays much longer
times inside the well layers before tunneling and this is un-
derstood as due to quantum confinement effect and to the
higher tunnel barrier seen for this lower energy carrier. Fi-
nally, observe in Figs. 9�b� and 2�b� �Figs. 10�b� and 2�c��
that two peaks of �pd�E� are located in the energy ranges
where the spin-splitting minibands do not overlap. More spe-
cifically, these peaks, localized at E�134 meV and 164
meV �E�248 meV and 270 meV�, correspond to different
spin states and the time localization for the first is several
times larger than for the other. Interesting enough, these
finite SLs may show dynamic spin filtering properties
in energy ranges substantially different and specially de-

signed structures corroborates their exploration as filtering
devices.

IV. CONCLUSIONS

We have carried out a detailed study of spin-dependent
transport properties in finite zincblende semiconductor SLs
containing N periods d=a+b. The Dresselhaus spin-orbit
coupling taken into account in the effective Hamiltonian is
responsible for spin-splitting. With the help of the transfer-
matrix method, we have derived analytical expressions for
the complex transmission coefficients, which allowed the
calculation of dynamical properties such as density of states,
group velocity and phase delay time. We have shown that the
spin-dependent miniband structure of infinite semiconductor
SLs plays a fundamental role in the description and in un-
derstanding of the properties associated with these dynamical
quantities. Specifically, these quantities are oscillating func-
tions of the electron energy for a N-period SL and their
maxima and/or minima are always localized inside the cor-
responding spin-split miniband. These oscillations disappear
for energies inside the SL minigaps. We have identified two
electron energy ranges were transmission energy peaks and
spin-split minibands do not overlap. In these energy ranges,
the polarization efficiency is essentially 100%, suggesting
that the finite SL system may be explored as vertical spin
filtering mechanisms even for unpolarized injection. Finally,
inside the energy ranges where the spin-split minibands over-
lap, they may be also explored as longitudinal multichannel
spin filters, but their efficiencies depend on the degree of
resonant peak overlapping. We stress that these results and
analysis can be readily extended in order to treat other finite
N-period semiconductor SL using particular semiconductors
where the inclusion of the Rashba term may predominates.

FIG. 7. �Color online� Transmission coefficient and polarization
efficiency as functions of the energy for a=30 Å, b=60 Å, N
=10, and dkp=2. Panels �a� and �b� show results for spin states �+

and �−, respectively. Observe in these two panels the set of spin-up
�spin-down� isolated resonant peaks with energy above �below� 265
�250� meV.

FIG. 8. �Color online� Group velocity and phase delay time as
functions of the energy for a double-barrier resonant device �N
=2� with dkp=0,2; a=60 Å and b=30 Å �panels �a� and �b��, and
a=30 Å, b=60 Å �panels �c� and �d��. Signs + and − correspond to
spin states �+ and �−, respectively.
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APPENDIX

To derive expressions in Eqs. �12�–�17�, it should be
noted that the general solution of Eq. �7� for u�kp ,z� in each
layer may be written as

u�kp,z� = A0 cos�Q�z − za�� + B0
m�kp�

Q
sin�Q�z − za�� ,

�37�

where A0 and B0 are constants, za denotes an arbitrary point
in each of the layer materials, and m�kp� and Q are defined in
Eqs. �8� and �17�, respectively. Since the transfer matrix �uni-
modular� in each layer may be written as

M�z − za� = 
 cos�Q�z − za��
m�kp�

Q
sin�Q�z − za��

−
Q

m�kp�
sin�Q�z − za�� cos�Q�z − za�� � ,

�38�

the two-component function f�z ,kp� �see Eq. �10�� associated
with the solution �37� can be written in the form

f�z,kp� = M�z − za�f�za,kp� . �39�

Using this equation and the continuity for f�z ,kp�, one can
easily arrive to the expression

W = MA�a�MB�b� , �40�

for the transfer matrix W defined in Eq. �11�, where

MA�a� = 
 cos aQ1
m1�kp�

Q1
sin aQ1

−
Q1

m1�kp�
sin aQ1 cos aQ1

� , �41�

MB�b� = 
 cos bQ2
m2�kp�

Q2
sin bQ2

−
Q2

m2�kp�
sin bQ2 cos bQ2

� , �42�

are the transfer matrices through layers A and B, respec-
tively. It is easy to verify that the matrix elements of W,
shown in Eq. �40�, are as the definition in Eqs. �12�–�15�.

FIG. 9. �Color online� Group velocity �vg� and phase delay time
��pd� as functions of the energy for N=5; dkp=2; and a=60 Å, b
=30 Å. Signs + and − correspond to spin states �+ and �−,
respectively.

FIG. 10. �Color online� Group velocity �vg� and phase delay
time ��pd� as functions of the energy for N=5; dkp=2; and a
=30 Å, b=60 Å. Signs + and − correspond to spin states �+ and
�−, respectively.
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